Journal of the Korean Academy of Pediatric Dentistry 2000;27(3):400-409.
Published online August 31, 2000.
ELECTROPHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERISTICS OF FACIAL NUCLEUS IN RAT
1
2
3 
Abstract
This study used in vivo intracellular and extracellular field potential recording to evaluate the intrinsic membrane properties and connection pattern within facial nucleus. 1. There were four subdivisions of medial, intermediate, lateral, and dorsolateral in facial nucleus. 2. Principal cells in the facial nucleus was recorded from and filled with neurobiotin in anesthetized rats. The extent of their dendrites and the characteristics of cell body were examined. 3. Principal cells had a large amplitude action potential and afterhyperpolarization was followed a single action potential. 4. The response from facial motonucleus to electrical stimulation of the facial nerve was mainly a monophasic wave, with a latency of 1 msec, which was assumed to reflect antidromic activation of facial motoneurons. In some of rats the response in addition showed late components at a latency of about 7-8 msec, but its amplitude was small. 5 Most of cells exhibited accommodation of spike discharge upon depolarization of membrane by 0.8 nA for 400 ms. Our results support the hypothesis that there normally are weak connections between different parts of the facial motonucleus to explain pathophysiology of hemifacial spasm and facial naive paralysis.
Key Words: Facial nucleus, Synapse, Membrane properties, Facial nerve paralysis, Hemifacial spasm


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
Seoul National University, Dental Hospital, B1-166 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
Tel: +82-70-4145-8875    Fax: +82-2-745-8875    E-mail: info@kapd.org                

Copyright © 2022 by Korean Academy of Pediatric Dentistry.

Developed in M2PI

Close layer
prev next