Journal of the Korean Academy of Pediatric Dentistry 2000;27(3):410-418.
Published online August 31, 2000.
TEMPERATURE CHANGES IN THE PULP ACCORDING TO VAR10US RESTORATIVE MATERIALS AND BASES DURING POLISHING PROCEDURE
 
연마시 여러 가지 수복재와 이장재의 사용에 따른 치수내 온도변화
백병주, 이두철, 김미라, 김재곤
전북대학교 치과대학 소아치과학교실 및 구강생체과학연구소
Abstract
An in vitro study was performed to evaluate the effect of four variables on the temperature rise produced by polishing of restorations. The four variables were : restorative material, base, thickness of remaining dentin, continuous polishing or intermittent polishing. Class V cavities were cut on extracted molar and restored with composite resin, resin-modified glass ionomer cement, compomer, amalgam on the various bases (glass ionomer cement, zinc oxide eugenol cement, zinc phosphate cement) Dentin thickness under the restoration was 0.5mm, 1.5mm. Polishing was done with an aluminum oxide-coated disc. Polishing time was continuous or intermittent for up to 1 minute. Intra-pulpal temperature increased almost linearly in all cases. Amalgam produced highest temperature rises at the pulp, while the composite resin, resin-modified glass ionomer cement and compomer were not different for each other. The rate and extent of temperature rising of amalgam restoration was reduced by presence of a cement base. Zinc oxide eugenol cement bases showed the highest temperature rise, while glass ionomer cement, zinc phosphate cement were not different to the untreated tooth Thickness of remaining dentin was only significant for the amalgam restoration. Continuous polishing produced higher temperature rise than intermittent polishing.
Key Words: Temperature changes, Polishing, Composite resin, Amalgam


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
Seoul National University, Dental Hospital, B1-166 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
Tel: +82-70-4145-8875    Fax: +82-2-745-8875    E-mail: info@kapd.org                

Copyright © 2025 by Korean Academy of Pediatric Dentistry.

Developed in M2PI

Close layer
prev next