1. Lee KH : Growth assessment and diagnosis of growth disorders in childhood. Clin Exp Pediatr, 46:1171-1177, 2003.
2. Sung IK : Monitoring growth in childhood: practical clinical guide.
J Korean Med Assoc, 52:211-224, 2009.
3. Kim DH : Assessment of Bone Age During Pubertal Age.
J Korean Soc Pediatr Endocrinol, 16:135-138, 2011.
4. Pancherz H , Hägg U : Dentofacial orthopedics in relation to somatic maturation: An analysis of 70 consecutive cases treated with the Herbst appliance.
Am J Orthod, 88:273-287, 1985.
5. Hassel B , Farman AG : Skeletal maturation evaluation using cervical vertebrae.
Am J Orthod Dentofacial Orthop, 107:58-66, 1995.
6. Fishman LS : Maturational patterns and prediction during adolescence.
Angle Orthod, 57:178-193, 1987.
7. Björk A , Helm S : Prediction of the age of maximum puberal growth in body height.
Angle Orthod, 37:134-143, 1967.
8. Leite HR , O’Reilly MT , Close JM : Skeletal age assessment using the first, second, and third fingers of the hand.
Am J Orthod Dentofacial Orthop, 92:492-498, 1987.
9. Liliequist B , Lundberg M : Skeletal and tooth development.
Acta Radiol Diagn, 11:97-112, 1971.
10. Flores-Mir C , Burgess CA , Champneyn M , Jensen RJ , Pitcher MR , Major PW : Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations.
Angle Orthod, 76:1-5, 2006.
11. Gandini P , Mancini M , Andreani F : A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation.
Angle Orthod, 76:984-989, 2006.
12. Stiehl J , Müller B , Dibbets J : The development of the cervical vertebrae as an indicator of skeletal maturity: comparison with the classic method of hand-wrist radiograph.
J Orofac Orthop, 70:327-335, 2009.
13. Román PS , Palma JC , Oteo MD , Nevado E : Skeletal maturation determined by cervical vertebrae development.
Eur J Orthod, 24:303-311, 2002.
14. Garn SM : Radiographic atlas of skeletal development of the hand and wrist.
Am J Hum Genet, 11:282-283, 1959.
15. Chapman SM : Ossification of the adductor sesamoid and the adolescent growth spurt.
Angle Orthod, 42:236-244, 1972.
16. Kim SY , Oh YJ , Shin JY , Rhie YJ , Lee KH : Comparison of the Greulich-Pyle and Tanner Whitehouse (TW3) Methods in Bone Age Assessment. J Korean Soc Pediatr Endocrionol, 13:50-55, 2008.
17. Lee JS : The application of TW3 method for prediction about bone age in hand AP image of children.
J Korean Soc Radiol, 9:349-356, 2015.
18. Buckler JM : How to make the most of bone ages.
Arch Dis Child, 58:761-763, 1983.
19. Kim SY , Yang SW : Assessment of Bone Age: A comparison of the Greulich Pyle Method to the Tanner Whitehouse Method. J Korean Endocr Soc, 13:198-204, 1998.
20. Milner GR , Levick RK , Kay R : Assessment of bone age: a comparison of the Greulich and Pyle, and the Tanner and Whitehouse methods.
Clin Radiol, 37:119-121, 1986.
21. Soudack M , Ben-Shlush A , Jacobson J , Raviv-Zilka L , Eshed I , Hamiel O : Bone age in the 21st century: is Greulich and Pyle’s atlas accurate for Israeli children.
Pediatr Radiol, 42:343-348, 2012.
22. Cantekin K , Celikoglu M , Miloglu O , Dane A , Erdem A : Bone age assessment: the applicability of the Greulich-Pyle method in Eastern Turkish children.
J Forensic Sci, 57:679-682, 2012.
23. Paxton ML , Lamont AC , Stillwell AP : The reliability of the Greulich-Pyle method in bone age determination among Australian children.
J Med Imaging Radiat Oncol, 57:21-24, 2013.
24. Dahlberg PS , Mosdøl A , Ding Y , Bleka Ø , Rolseth V , Straumann GH , Skjerven-Martinsen M , Delaveris GJM , Vist GE : A systematic review of the agreement between chronological age and skeletal age based on the Greulich and Pyle atlas.
Eur Radiol, 29:2936-2948, 2019.
25. Lee JH , Kim DH , Jeong SN , Choi SH : Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
J Dent, 77:106-111, 2018.
26. Ariji Y , Yanashita Y , Kutsuna S , Muramatsu C , Fukuda M , Kise Y , Nozawa M , Kuwada C , Fujita H , Katsumata A , Ariji E : Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique.
Oral Surg Oral Med Oral Pathol Oral Radiol, 128:424-430, 2019.
27. Russel S , Norvig P : Artificial intelligence: a modern approach, 3rd ed. Pearson Prentice Hall;Saddle River: 1-5, 2010.
28. LeCun Y , Bengio Y , Hinton G : Deep learning.
Nature, 521:436-444, 2015.
30. Kim JR , Shim WH , Yoon HM , Hong SH , Lee JS , Cho YA , Kim S : Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency.
AJR Am J Roentgenol, 209:1374-1380, 2017.
31. Perinetti G , Perillo L , Franchi L , Di Lenarda R , Contardo L : Maturation of the middle phalanx of the third finger and cervical vertebrae: a comparative and diagnostic agreement study.
Orthod Craniofac Res, 17:270-279, 2014.
32. Wong RWK , Alkhal HA , Rabie ABM : Use of cervical vertebral maturation to determine skeletal age.
Am J Orthod Dentofacial Orthop, 136:484.E1-E6, 2009.
33. Kasimoglu Y , Marsan G , Gencay K : Skeletal Maturity Prediction Using Radiographs of the Medial Phalanx of the Third Finger and Cervical Vertebrae. Int J Med Invest, 9:42-49, 2020.
34. Jeon JY , Kim CS , Kim JS , Choi SH : Correlation and Correspondence between Skeletal Maturation Indicators in Hand-Wrist and Cervical Vertebra Analyses and Skeletal Maturity Score in Korean Adolescents.
Children, 8:910, 2021.
35. Baccetti T , Franchi L , McNamara JA Jr: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth.
Angle Orthod, 72:316-323, 2002.
36. Hägg U , Taranger J : Skeletal stages of the hand and wrist as indicators of the pubertal growth spurt.
Acta Odontol Scand, 38:187-200, 1980.
37. Satoh M : Bone age: assessment methods and clinical applications.
Clin Pediatr Endocrinol, 24:143-152, 2015.
38. King DG , Steventon DM , O’Sullivan MP , Cook AM , Hornsby VP , Jefferson IG , King PR : Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods.
Br J Radiol, 67:848-851, 1994.
39. Li D , Pehrson LM , Lauridsen CA , Tøttrup L , Fraccaro M , Elliott D , Zając HD , Darkner S , Carlsen JF , Nielsen MB : The added effect of artificial intelligence on physicians’ performance in detecting thoracic pathologies on CT and chest X-ray: A systematic review.
Diagnostics, 11:2206, 2021.
41. Hwang J , Yoon HM , Hwang JY , Kim PH , Bak B , Bae BU , Sung J , Kim HJ , Jung AY , Cho YA , Lee JS : Re-Assessment of Applicability of Greulich and Pyle-Based Bone Age to Korean Children Using Manual and Deep Learning-Based Automated Method.
Yonsei Med J, 63:683-691, 2022.
42. Kim JR , Lee YS , Yu J : Assessment of bone age in prepubertal healthy Korean children: comparison among the Korean standard bone age chart, Greulich-Pyle method, and Tanner-Whitehouse method.
Korean J Radiol, 16:201-205, 2015.
43. Cole AJ , Webb L , Cole TJ : Bone age estimation: a comparison of methods.
Br J Radiol, 61:683-686, 1988.
44. Oh Y , Lee R , Kim HS : Evaluation of skeletal maturity score for Korean children and the standard for comparison of bone age and chronological age in normal children.
J Pediatr Endocrinol Metab, 25:279-284, 2012.
45. Chiang KH , Chou ASB , Yen PS , Ling CM , Lin C , Lee CC , Chang PY : The reliability of using Greulich-Pyle method to determine children’s bone age in Taiwan. Tzu Chi Med J, 17:417-420, 2005.
47. Patel PS , Chaudhary AR , Dudhia BB , Bhatia PV , Soni NC , Jani YV : Accuracy of two dental and one skeletal age estimation methods in 6-16 year old Gujarati children.
J Forensic Dent Sci, 7:18-27, 2015.
48. Al-Hadlaq A , Al-Qarni M , Al-Kahtani A , Al-Obaid A : Comparative study between hand-wrist method and cervical vertebral maturation method for evaluation of skeletal maturity in Saudi boys. Pak Oral Dent J, 27:187-192, 2007.
49. Kim JH , Yun S , Hwang SS , Shim JO , Chae HW , Lee YJ , Lee JH , Kim SC , Lim D , Yang SW , Oh K , Moon JS , Committee for the Development of Growth Standards for Korean Children and Adolescents , Committee for School Health and Public Health Statistics, the Korean Pediatric Society , Division of Health and Nutrition Survey, Korea Centers for Disease Control and Prevention : The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects.
Korean J Pediatr, 61:135-149, 2018.
50. Madhu S , Hegde AM , Munshi AK : The developmental stages of the middle phalanx of the third finger (MP3): a sole indicator in assessing the skeletal maturity.
J Clin Pediatr Dent, 27:149-156, 2003.
51. Krailassiri S , Anuwongnukroh N , Dechkunakorn S : Relationships between dental calcification stages and skeletal maturity indicators in Thai individuals.
Angle Orthod, 72:155-166, 2002.
52. Yoo HK , Ra JY , Lee JW : Skeletal Maturity Evaluation using Maxillary Canine Development in Growing Children.
J Korean Acad Pediatr Dent, 46:247-254, 2019.
53. Lee YJ , Mah YJ : Skeletal Age Assessment of SMI and MP3 Stages to Predict the Pubertal Growth Spurt.
J Korean Acad Pedatr Dent, 46:233-238, 2019.
54. Yeon KM : Standard bone-age of infants and children in Korea.
J Korean Med Sci, 12:9-16, 1997.
55. Hegde DY , Baliga S , Yeluri R , Munshi AK : Digital radiograph of the middle phalanx of the third finger (MP3) region as a tool for skeletal maturity assessment.
Indian J Dent Res, 23:447-453, 2012.
56. Prion S , Haerling KA : Making sense of methods and measurement: Spearman-rho ranked-order correlation coefficient.
Clin Simul Nurs, 10:535-536, 2014.