1. Tan H, Peres KG, Peres MA : Retention of Teeth and Oral Health-Related Quality of Life.
J Dent Res, 95:1350-1357, 2016.
3. Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NH : Tooth loss and oral health-related quality of life: a systematic review and meta-analysis.
Health Qual Life Outcomes, 8:126, 2010.
5. Arweiler NB, Netuschil L : The Oral Microbiota. In: Schwiertz A, editor. Microbiota of the Human Body: Implications in Health and Disease. Springer International Publishing, Cham, 45-60, 2016.
6. Simón-Soro A, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A : Microbial geography of the oral cavity.
J Dent Res, 92:616-621, 2013.
7. An SQ, Hull R, Metris A, Barrett P, Webb JS, Stoodley P : An in vitro biofilm model system to facilitate study of microbial communities of the human oral cavity.
Lett Appl Microbiol, 74:302-310, 2022.
8. Nath S, Sethi S, Bastos JL, Constante HM, Mejia G, Haag D, Kapellas K, Jamieson L : The Global Prevalence and Severity of Dental Caries among Racially Minoritized Children: A Systematic Review and Meta-Analysis.
Caries Res, 57:485-508, 2023.
9. Wen PYF, Chen MX, Zhong YJ, Dong QQ, Wong HM : Global Burden and Inequality of Dental Caries, 1990 to 2019.
J Dent Res, 101:392-399, 2022.
10. Janakiram C, Mehta A, Venkitachalam R : Prevalence of periodontal disease among adults in India: A systematic review and meta-analysis.
J Oral Biol Craniofac Res, 10:800-806, 2020.
14. Huang CX, Wang JJ, Wang SH, Zhang YD : A review of deep learning in dentistry.
Neurocomputing, 554:126629, 2023.
16. Schwendicke F, Golla T, Dreher M, Krois J : Convolutional neural networks for dental image diagnostics: A scoping review.
J Dent, 91:103226, 2019.
17. He K, Zhang X, Ren S, Sun J : Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778, 2016.
18. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A : Going deeper with convolutions.
Proceedings of the IEEE conference on computer vision and pattern recognition, 1-9, 2015.
19. Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J : Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children.
Diagnostics (Basel), 11:1477, 2021.
20. Lee JH, Kim DH, Jeong SN, Choi SH : Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
J Dent, 77:106-111, 2018.
21. Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y : Deep Neural Networks for Dental Implant System Classification.
Biomolecules, 10:984, 2020.
22. Jung W, Lee KE, Suh BJ, Seok H, Lee DW : Deep learning for osteoarthritis classification in temporomandibular joint.
Oral Dis, 29:1050-1059, 2023.
24. Girshick R, Donahue J, Darrell T, Malik J : Rich feature hierarchies for accurate object detection and semantic segmentation.
Proceedings of the IEEE conference on computer vision and pattern recognition, 580-587, 2014.
25. Girshick R : Fast R-CNN. Proceedings of the IEEE international conference on computer vision, 1440-1448, 2015.
26. Ren SQ, He KM, Girshick R, Sun J : Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
Advances in Neural Information Processing Systems 28 (Nips 2015), 28, 2015.
27. Du J : Understanding of Object Detection Based on CNN Family and YOLO.
J Phys Conf Ser, 1004:012029, 2018.
28. Kim C, Kim D, Jeong H, Yoon SJ, Youm S : Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm.
Appl Sci, 10:5624, 2020.
30. Kuwada C, Ariji Y, Kise Y, Fukuda M, Ota J, Ohara H, Kojima N, Ariji E : Detection of unilateral and bilateral cleft alveolus on panoramic radiographs using a deep-learning system.
Dentomaxillofac Radiol, 52:20210436, 2023.
31. Bharati P, Pramanik A : Deep Learning Techniques - R-CNN to Mask R-CNN: A Survey. Springer Singapore, Singapore, 657-668, 2020.
32. Anantharaman R, Velazquez M, Lee Y : Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2197-2204, 2018.
33. Ronneberger O, Fischer P, Brox T : U-Net: Convolutional Networks for Biomedical Image Segmentation. Springer International Publishing, Cham, 234-241, 2015.
35. Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS : Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal.
J Clin Med, 10:2577, 2021.
36. Ying S, Wang B, Zhu H, Liu W, Huang F : Caries segmentation on tooth X-ray images with a deep network.
J Dent, 119:104076, 2022.
37. Bayrakdar IS, Orhan K, Akarsu S, Çelik Ö, Atasoy S, Pekince A, Yasa Y, Bilgir E, Sağlam H, Aslan AF, Odabaş A : Deep-learning approach for caries detection and segmentation on dental bitewing radiographs.
Oral Radiol, 38:468-479, 2022.
38. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, Li J : Artificial Intelligence for the Computer-ided Detection of Periapical Lesions in Conebeam Computed Tomographic Images.
J Endod, 46:987-993, 2020.
39. Lahoud P, Diels S, Niclaes L, Van Aelst S, Willems H, Van Gerven A, Quirynen M, Jacobs R : Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT.
J Dent, 116:103891, 2022.
40. Nozawa M, Ito H, Ariji Y, Fukuda M, Igarashi C, Nishiyama M, Ogi N, Katsumata A, Kobayashi K, Ariji E : Automatic segmentation of the temporomandibular joint disc on magnetic resonance images using a deep learning technique.
Dentomaxillofac Radiol, 51:20210185, 2022.
41. Mohammad-Rahimi H, Rokhshad R, Bencharit S, Krois J, Schwendicke F : Deep learning: A primer for dentists and dental researchers.
J Dent, 130:104430, 2023.
42. Montagnon E, Cerny M, Cadrin-Chênevert A, Hamilton V, Derennes T, Ilinca A, Vandenbroucke-Menu F, Turcotte S, Kadoury S, Tang A : Deep learning workflow in radiology: a primer.
Insights Imaging, 11:22, 2020.
43. Cheng L, Zhang L, Yue L, Ling J, Fan M, Yang D, Huang Z, Niu Y, Liu J, Zhao J, Li Y, Guo B, Chen Z, Zhou X : Expert consensus on dental caries management.
Int J Oral Sci, 14:17, 2022.
45. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F : Detecting caries lesions of different radiographic extension on bitewings using deep learning.
J Dent, 100:103425, 2020.
46. Gao ZK, Yuan T, Zhou XJ, Ma C, Ma K, Hui P : A Deep Learning Method for Improving the Classification Accuracy of SSMVEP-Based BCI. IEEE Transactions on Circuits and Systems. Part 2: Express Briefs, 67:3447-3451, 2020.
47. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, Srinivasan G, Aljanabi MNA, Donatelli RE, Lee SJ : Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD.
Angle Orthod, 89:903-909, 2019.
48. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J : Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence.
J Dent Res, 99:249-256, 2020.
49. Xie X, Wang L, Wang A : Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment.
Angle Orthod, 80:262-266, 2010.
50. Jung SK, Kim TW : New approach for the diagnosis of extractions with neural network machine learning.
Am J Orthod Dentofacial Orthop, 149:127-133, 2016.
51. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E : Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography.
Oral Radiol, 36:337-343, 2020.
52. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, Fujita H, Ariji E : A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography.
Dentomaxillofac Radiol, 48:20180218, 2019.
54. Chen CC, Wu YF, Aung LM, Lin JC, Ngo ST, Su JN, Lin YM, Chang WJ : Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence.
J Dent Sci, 18:1301-1309, 2023.
55. Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, Huh KH, Lee SS, Heo MS, Choi SC, Kim TI, Yi WJ : Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis.
Sci Rep, 10:7531, 2020.
56. Kong HJ, Yoo JY, Lee JH, Eom SH, Kim JH : Performance evaluation of deep learning models for the classification and identification of dental implants.
J Dent Sci, 18:1301-1309, 2023.
57. Lee JH, Kim YT, Lee JB, Jeong SN : A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study.
Diagnostics, 10:910, 2020.
59. Jung SK, Lim HK, Lee S, Cho Y, Song IS : Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network.
Diagnostics (Basel), 11:688, 2021.