1. Krithiga R , Lakshmi C : A survey: segmentation in dental X-ray images for diagnosis of dental caries. Int J Cont Theory Appl, 9:941-948, 2016.
2. Selwitz RH , Ismail AI , Pitts NB : Dental caries.
Lancet, 369:51-59, 2007.
3. Tam LE , McComb D : Diagnosis of occlusal caries: Part II. Recent diagnostic technologies.
J Can Dent Assoc, 67:459-463, 2001.
4. Akkaya N , Kansu Ö , Kansu H , Çağirankaya LB , Arslan U : Comparing the accuracy of panoramic and intraoral radiography in the diagnosis of proximal caries.
Dentomaxillofac Radiol, 35:170-174, 2006.
5. McKnight-Hanes C , Myers DR , Dushku JC , Thompson WO , Durham LC : Radiographic recommendations for the primary dentition: comparison of general dentists and pediatric dentists.
Pediatr Dent, 12:212-216, 1990.
6. da Silva Pierro VS , Barcelos R , de Souza IPR , Raymundo R Jr: Pediatric Bitewing Film Holder: Preschoolers’ Acceptance and Radiographs’ Diagnostic Quality.
Pediatr Dent, 30:342-347, 2008.
7. Pitts NB : The use of bitewing radiographs in the management of dental caries: scientific and practical considerations.
Dentomaxillofac Radio, 25:5-16, 1996.
8. Gopal KS , Krishnaraj N , Priya M : Faulty radiographs: A retrospective radiographic analysis. Int J Appl Dent Sci, 4:72-76, 2018.
9. Bini SA : Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care.
J Arthroplasty, 33:2358-2361, 2018.
11. Karimi D , Salcudean SE : Reducing the hausdorff distance in medical image segmentation with convolutional neural networks.
IEEE Trans Med Imaging, 39:499-513, 2020.
13. Yan B , Fan P , Lei X , Liu Z , Yang F : A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5.
Remote Sens, 13:1619, 2021.
14. Girshick R , Donahue J , Darrell T , Malik J : Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 580-587, 2014.
15. Arya C , Tripathi A , Singh P , Diwakar M , Sharma K , Pandey H : Object detection using deep learning: a review.
J Phys Conf Series, 1854:012012, 2021.
16. Kim H , Song JS , Shin TJ , Hyun HK , Kim JW , Jang KT , Kim YJ : Detection of Proximal Caries Lesions with Deep Learning Algorithm.
J Korean Acad Pediatr Dent, 49:131-139, 2022.
17. Young DA , Nový BB , Zeller GG , Hale R , Hart TC , Truelove EL , American Dental Association Council on Scientific Affairs : The American Dental Association caries classification system for clinical practice: a report of the American Dental Association Council on Scientific Affairs.
J Am Dent Assoc, 146:79-86, 2015.
19. Shorten C , Khoshgoftaar TM : A survey on image data augmentation for deep learning.
J Big Data, 6:60, 2019.
20. Rezatofighi H , Tsoi N , Gwak J , Sadeghian A , Reid I , Savarese S : Generalized intersection over union: A metric and a loss for bounding box regression. CVF conference on computer vision and pattern recognition, 658-666, 2019.
21. Ren S , He K , Girshick R , Sun J : Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell, 39:1137-1149, 2017.
22. Park IH , Kim SH : Performance Indicator Survey for Object Detection. Proc. of 20th International Conference on Control, Automation and Systems (ICCAS), 284-288, 2020.
23. Padilla R , Netto SL , Da Silva EA : A survey on performance metrics for object-detection algorithms. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 237-242, 2020.
24. Pedregosa F , Varoquaux G , Gramfort A , Michel V , Thirion B , Grisel O , Blondel M , Prettenhofer P , Weiss R , Dubourg V : Scikit-learn: Machine learning in Python. J Mach Learn Res, 12:2825-2830, 2011.
25. Buitinck L , Louppe G , Blondel M , Pedregosa F , Mueller A , Grisel O , Niculae V , Prettenhofer P , Gramfort A , Grobler J , Layton R , Vanderplas J , Joly A , Holt B , Varoquaux G : API design for machine learning software: experiences from the scikit-learn project. arXiv, 1309.0238, 2013.
26. Krohling LL , de Paula KMP , Behlau M : ROC curve of the Pediatric Voice Related Quality-of-Life Survey (PVRQOL).
Codas, 28:311-313, 2016.
27. Campbell I : Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations.
Stat Med, 26:3661-3675, 2007.
28. Mo KH , Yoon JH , Kim SG , Lee SH : Detection of proximal caries using laser fluorescence. J Korean Acad Pediatr Dent, 31:323-330, 2004.
29. Wilson PR , Beynon AD : Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography.
Arch Oral Biol, 34:85-88, 1989.
30. Seol JH , Oh YH , Lee NY , Lee SH : Detection of early proximal caries with laser fluorescence. J Korean Acad Pediatr Dent, 31:236-246, 2004.
32. Srivastava MM , Kumar P , Pradhan L , Varadarajan S : Detection of tooth caries in bitewing radiographs using deep learning. arXiv, 1711.07312, 2017.
33. Cantu AG , Gehrung S , Krois J , Chaurasia A , Rossi JG , Gaudin R , Elhennawy K , Schwendicke F : Detecting caries lesions of different radiographic extension on bitewings using deep learning.
J Dent, 100:103425, 2020.
34. Lian L , Zhu T , Zhu F , Zhu H : Deep learning for caries detection and classification.
Diagnostics, 11:1672, 2021.
36. Youssry N , Khattab A : Accurate Real-Time Face Mask Detection Framework Using YOLOv5. 4th IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems, DTS2022, 2022.